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FOREWORD

This report is prepared as a self-contained technical document
and submitted as Part I of Final Report in lieu of the Second Quarterly
Report. It contains all technical results obtained prior to May 28, 1967,
and represents a complete description of Phase I of the contract work that
deals with the impedance characteristics of thin conical shells under axial

:
excitations. A part of the contents of the first quarterly report, with

\v/’“
necessary revision and corrections, has been included herein for complete-

ness, and the first quarterly report should be superseded by the present

report.

A digital computer program in CDC 3600 Fortran Compiler Language

e

is submitted accompanying this report as a part of the technical results
e e

obtained in Phase I of the contract.
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ABSTRACT

A combined analytical and experimental study is presented to
demonstrate that the transfer matrix or four-pole parameters of a trun-
cated, thin conical shell, under axial excitations, may be accurately
obtained by applying membrane shell theory. A general calculation pro-

r\_\'—"_—*“——\’__,__/—
cedure is described, and the numerical results are compared with test
data for three shell models with semivertex angles 0°, 15° and 30° over
a frequency range from 20 to 600 cps. The excellent agreement indicates
that the four -pole parameters calculated through the present analysis are
adequate for vibration analyses if the input excitation frequency is appreci-
ably lower than a theoretical singularity on the frequency spectrum inherent
to the membrane shell theory. If the excitation frequency is near or above

this singularity (around 6000 cps for the models considered), a more

accurate bending theory of shell must be used.
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NOMENCLATURE
radius of the major base of the conical shell, or radius of
the cylindrical shell
radius of the minor base of the conical shell
capacitance
Young's modulus
total axial force transmitted through a shell cross section

axial forces at the input and output ends, respectively

shell thickness

inductance

length of cylindrical shell

mass attached to output terminal
total mass of the shell

meridional and circumferential stress resultants in shell,
respectively

meridional coordinate of conical shell, distance measured
from the apex

meridional distance from apex to major base of conical
shell

time
axial displacement of a shell cross section
axial displacements of input and output ends, respectively

displacements of shell wall in meridional and outward
normal directions, respectively
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x
x=x/a
2115212
Z1. 22, 23
O'ij

Pij

¥ =Db/a
1%

£ = s/sl
P

Q= w/wo
w

axial velocity of input and output ends, respectively

meridional coordinate of cylindrical shell, distance
measured from output end

dimensionless coordinate of cylindrical shell

driving point impedance and transfer impedance,
respectively

equivalent impedance parameters in mobility circuit
analog

four -pole parameters

transfer matrix

completeness parameter

Poisson's ratio

dimensionless coordinate of conical shell
mass density

dimensionless frequency

circular frequency in rad/sec

Wo = (E/P)l/z/az
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INTRODUCTION

In recent years, a growing interest has been directed toward the
application of the mechanical impedance approach to analyze vibrations of
complex stru‘ctur‘es(e.g.,AR'ef.s.‘l-IO).. Although derived from a rather old
concept in electrical engineering, the impedance technique and mechanical
circuit analysis offer a much needed, complementary alternative to the
normal-mode analysis of structural vibration problems. The former is
especially suitable and superior in obtaining structural response informa-
tion when the main excitation source may be definitely identified, such as:
massive, rotating engines in a factory building; the rocket engine of a
launch vehicle or missile structure; the earthquake waves felt by founda-
tions; or the power plant in a ship hull structure. These excitation sources
usually exert oscillatory forces at some definite '""'singular points'' of the
structures and thus may excite a large number of normal modes within a
given frequency range. This multiplicity of modes will obviously further
amplify the analytical difficulties associated with structural complexity,
and often renders an accurate normal mode analysis of the response
impractical, if not infeasible. In this class of engineering problems, the
impedance method not only makes available the systematic techniques of
circuit analysis through electric analogies, but also allows a direct
correlation with test data or actual vibration record of the structure

during operation.



In order to develop the full advantage of the mechanical circuit
analysis, preliminary studies must be made to provide complete charac-
teristic information for the basic structural elements, such as: lumped
spring-mass units, beams, plates, and shells of commonly used configura-
tions. These basic impedance characteristics (transfer matrix or four-
pole parameters) may be used subsequently in analyzing any complex struc-
tures containing such elements, which are then replaced by the so-called
"black box' in the mechanical circuit model for the entire structure. The
present study is intended to provide the impedance characteristics of the
trﬁncated, thin conical shell (including the cylindrical shell as a special
case) with respect to axisymmetric longitudinal excitations. This informa-
tion will be useful, for example, in handling longitudinal vibration problems
of complex launch vehicle structures which include a number of cylindrical
and conical shells in tandem arrangements.

FOUR-POLE PARAMETER VIBRATION
ANALYSIS OF STRUCTURES

Consider a linear, elastic, structural element which has a single
input terminal, with oscillatory input force F1 and velocity Vy, and a single
output terminal, with oscillatory output force F, and velocity V. Under
the restriction that no dynamic instability occurs, the relation between

these four quantities can be uniquely described by a linear transformation:



Fi=a1F; 199,V,
(1)
Vi

az1Fp tazV)

where the four coefficients a;; are termed four -pole pararneters1 which

J
are, in general, frequency-dependent complex quantities. When damping
is considered in the system, ajj will generally comprise both real and
imaginary parts; but, if damping is neglected, ajj and ap) reduce to real,
dimensionless numbers, whereas a;; and a,; become pure imaginary,

the former having the dimension of mechanical impedance (force/velocity,
or mechanical ohm) and the latter having the dimension of mobility or
mechanical admittance (velocity/force).

For those elastic systems which consist of a finite number of
simple, lumped elements (massless springs and rigid masses), the four-
pole parameters can always be written in simple algebraic forms. How-
ever, when the elastic system contains elements with distributed mass and
stiffness, the four-pole parameters become complicated transcendental
functions of the input frequency and, in most cases, cannot be obtained
in closed forms. It will be shown later that, for a continuous element such
as a nonuniform column or the conical shell under consideration, for
which the force and velocity variables are governed by a pair of coupled,
first-order differential equations, an efficient numerical integration pro-

cedure may be used to calculate the required four-pole parameters.



Moreover, since such an elastic element always possesses an
infinite number of natural frequencies (i.e., infinite degrees of freedom),
regardless of the imposed boundary conditions at the two terminals, the
electrical circuit analogies for such a mechanical four-pole element,

{Fig. 1(a)] cannot be exactly represented by a finite number of simple capa-
citors and inductors. * Using mobility circuit analogy (force-current,
velocity-voltage analogy), one can construct an exact circuit representa-
tion either by incorporating an infinite number of capacitors Cy, Cy, ..., Cy,
and inductors Lj, Lo, ..., Ln+1’ arranged as shown in the left of Fig-
ure 1(b), or by using equivalent impedances of transcendental expressions
Z1, Zp and Z3, as shown in the right of Figure 1(b). Due to the lack of
symmetry between the two terminals '"'1'" and ''2'" of a conical shell, the
two equivalent impedances Zj) and Z3 will not be equal as in the case of

the uniform bar or cylindrical shell. The relations between these equiva-

lent impedances and the four-pole parameters can be obtained from

Reference 1, as follows:

Zo +Z3 1
a = S a = —
1
1 Z3 127 7
(2)
212 + 2273 + Z3Z) Z| + 24
%21 Z3 922~ Z3

It may be noted that the four-pole parameters ajj can be expressed in

*Resistors are not used because damping effects are not considered in
the following analysis. '



terms of only three independent impedance parameters; this is because

the system obeys the reciprocity principle so that a;: must satisfy the

J
restraint condition
a a
11 12
=1 (3)
%21 %22

This condition may be used as an accuracy criterion to check the numerical
results.

For small frequencies which are well below the lowest frequency
at which any of % vanishes, the equivalent impedance parameters reduce
to the approximate form as shown in Figure 1(c). In this case, the
parameter Z, reduces to a simple capacitor, with the magnitude equal
to the total mass of the cone, while the other two parameters, Z; and Z5,
reduce to simple inductors, which represent the elastic property of the
cone.

TRANSFER MATRIX OF A TRUNCATED CONICAL
SHELL IN AXISYMMETRIC VIBRATIONS

In the following, we shall consider the analytical calculation of the
four -pole parameters aij for a truncated conical shell in axisymmetric
vibrations. No boundary conditions are prescribed except the restriction

that all the boundary quantities are harmonic with the excitation frequency

~ w. It will be assumed that, for thin conical shells with a no larger than,



say, 45°, the axisymmetric vibrations may be satisfactorily governed by

membrane theory. Thus, there are two equations of motion,

1
Ns + < (Ng - Ng) = phil

(4)

——l—NecotCL:ph\'i/
s

"and two stress-displacement relations,

N, = Eh (u,+vu+wcota>
1_v2 S
(5)
Ng = Eh (u+wcota+Vu,)
1 - v2 s

where s is the meridional distance measured from the vertex, prime
denotes differentiation with respect to s, dot denotes time differentiation,
and the other notations are given in the Nomenclature. Since only the
steady -state harmonic motions of the shell are under consideration, the
time dependence of all the stress and displacement variables may be put
in the usual form el®t; therefore, in the following analysis, the factor
eiwt will be ignored, and the time differentiation may be replaced by the

operator iw; e.g.,
2

u = iwu, u= (iw)zu = -p%u

For convenience, we shall introduce two new variables defined



F = -27sNg sin a cos a
(6)
U=-ucosa+wsina
which represent the resultant axial force transmitted through the cone and

the axial displacement, respectively. It may be noted that, at the input

terminal (major base), s = s}, the force and velocity are
F, = F(s;), Vy = iwU(s)) (7

and, at the output terminal (minor base), s = Ys1s the force and velocity

are
F,= Flys)),  Vp = iwUlys)) (8)

Using Egs. (6) to eliminate Ng and w from Eqgs. (4) and (5) and
introducing the dimensionless spatial coordinates £ = s/s;, we can write

the governing equations in the following form:

- 2 . g2ggylfrtanae o o2e2
U = cos a(cos®a - Q%£“) [ZTTEhF (1 £

2
Nez—Eﬁ—.—Q—é—[ucosa+U]
a sina cos a

(9)
ar _ —ZTrEh.QzéU csc a
d§

du _ 1 [ F

+ vaN
d§ Eh sin a LZTTE cos a 9:]

in which the dimensionless frequency parameter:



Q=wlw, (10)
with

wg = E/pa2 (10a)

The set of Egs. (9) is of second order and in a convenient form for numeri-

cal integration. It may be noted that a singularity exists at the frequency
Q=cosa (11)

at or above which the coefficient of the first equation of Eq. (9) tends to
infinity.

Independent numerical integrations of Egs. (9) for two sets of initial
values, (F, U) =(1,0) and (0, 1) at § = v, will yield two sets of influence
coefficients, (F, U) = (B, B21) and (B2, B22) at £ = 1, respectively. This
provides the transfer matrix [Bij] that relates the boundary values of (F, U)

at £ = 1 and 7.

Fy Bi1 Pra | [F2
= (12)
Uy Ba1 Bazd \U2
where the subscript 1 refers to the input end £ = 1, and the subscript 2

refers to the output end £ = 7. Since the axial velocities at the two

terminals are given by:



therefore, there follows from Eq. (12),

(13)
Vi = iwp1Fy +B2,V;
Comparing Eqgs. (13) to Egs. (1), we find the four-pole parameters
aj] =By, a1z = (-Brah )
(14)
az) =Py, azz = P22

In the calculation of Bij’ a standard subroutine for numerical integration

may be used to integrate Egs. (9).

SPECIAL CASE OF THE CYLINDRICAL SHELL (a = 0)

The set of Egs. (9) is not in a suitable form for the special case
of the cylindrical shell (a = 0). However, since the governing differential
equations for cylindrical shells have constant coefficients, it is possible
to obtain closed form solutions.

Referring to the dimensionless coordinate x = X/a, where X is the
meridional distance measured from the output terminal "2, " it can be
shown that the governing Eqgs. (4) and (5) may be reduced to a single

second-order differential equation for u,

2
——d;’ +X2u=0 (15)
dx



where

2 _ Q1 - (1 - v2)0?)
(1 - Q2

A

(16)

with the frequency parameter Q defined in Eqs. (10). It is obvious that

Eq. (15) has a siﬁgularity at Q=1 [cf. Eq. (11)], or w = w,, which limits
the applicability of membrane shell theory. We shall restrict our attention
to the frequency range £ <1, then N\ has a real value, and the general

solution of Eq. (15) may be written in the form
u=A sin Ax + B cos Ax (17)

From the first equation of Eqgs. (4), we have

N

2
X=Eb—a)\—°3-—- (A cos A\x - B sin \x)

Introducing the axial force and axial displacement variables with equivalent

definitions as Egs. (6), we obtain

2.2
F=- ETL&}%&’——(Acos)\x~Bsin)xx)
(18)
U= - (A sin \x + B cos \x)
Therefore, at the input terminal, x = £/a, where £ is the length of the

cylinder:

10



2,2
F = . Zmphafw® (Acoslf——Bsin?—\-{>
1 N a a
(19)
£
U = - (A sin A + B cos—)\£>
a a
and, at the output terminal, x =0,
2.2
F. = . 2rpha®w®
2 )\
(20)
U, =-B

Elimination of the integration constants A and B from Egs. (19) and (20)

yields
r ~ N
Y] 2.2
F, cos M . 2rpha®w® sin M sz
a N a
4 = 9 - (21)
N\ sin M
U, - & cos M Us
L Zﬁphazwz a L /
L -

This gives the desired transfer matrix [Bij] for cylindrical shells. Using
the relations, Eqs. (13), the four-pole parameters may be readily obtained

in closed form valid for w <wg:

aj] = apy = cos A

1}

a iwmA™! sin A (22)
12

iw'lm'lA sin A

az1

11
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in which, A= N /a, and m = 2mphal is the total mass of the cylindrical
shell. It may be noted that the parameters o5 given by Egs. (22) satisfy
the condition (3).

Substitution of Eqs. (22) into the relations (2) gives the equivalent
impedance parameters for the cylindrical shell:

(1 - cos A)Ai

Z1 =275 =
1 2 mw sin A

(0 <wy) (23)
A

Zoa= —
3 mwi sin A

which define the mobility circuit analog in Figure 1(b). If w is small (i.e.,
w << w,) and the shell is not too long, then A <<1, and Egs. (23) reduce to

the following approximate expressions:

7 =7 = Azi o Lwi
1~ <2 =
2mw 4w Eha
(w << wy) (24)
1
7.
3 muowi

which have the expected form defining the approximate circuit analog in

Figure 1(c), with the inductors L = L, = _é}%, and the capacitor C = m.,
Ta

It should be pointed out that, as w approaches w,, the parameter A
increases without bound; therefore, the four-pole parameters become
infinitely oscillatory, i.e., have infinite number of maxima and minima

within an arbitrarily small frequency interval enclosing w,. Therefore,
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when the excitation frequency is near or above this singularity, a more
accurate bending theory of shell is needed to correct the membrane solution.

The calculated four-pole parameters, ajj, for the three shell models
described below, are shown in Figures 2-4, in which the frequency singu-
larities are indicated by vertical dashed lines near 6000 cps.

IMPEDANCE EXPERIMENTS OF CONICAL SHELLS
SUPPORTING AN ARBITRARY MASS

It is evident that Egs. (1) provide two equations for four unknowns,
the two terminal forces and the two terminal velocities, and therefore
represent an indeterminate set. This is, in fact, an advantageous feature
of the method which permits versatile applications of the characteristic
four -pole parameters of structural elements. When the two terminals
are connected to other elements in any complex mechanical circuit system,
such as various stages of a launch-vehicle structure or its payload
assembly, two additional conditions are provided by the connecting joints.

In the present study, the calculated four -pole parameters will be
experimentally tested through the following arrangements: the major base
of the conical shell will be excited by an electrodynamic shaker with pre-
scribed input level and sweep frequency control, while the minor base will
be attached to a rigid mass M (Fig. 5). Since the impedance of the mass
is known, the boundary condition at the output terminal can be readily

obtained:
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F, = MwiV, (25)

Substitution of the above into Egs. (1) yields

(26)
From these, one can easily calculate the input impedance
F ajijMwi +a
lezv—lz 11M i+ - (27
1 %21Mer T dzp
and the transfer impedance
Fy .
212: V———'G,IIM(DI'I'Q,IZ (28)
2

Since, as mentioned before, aj}, and a} are pure imaginary, while aj;
and a,, are real, both Z}) and Z}, are pure imaginary quantities, indi-
cating the usual 90° phase-shift between the force and velocity variables.
In the correlation between calculated and measured results, only their
absolute values iZ“i and l lel need be considered.

It may be noted that two special cases of Eq. (25) are of particular
interest in view of their relation to the numerical calculation of Bij as well
as for their own physical significance. The first case is M = 0 (free end),
which implies F, = 0. If we set V, equal to unit velocity, Eqgs. (26)

immediately give F| = ajp and V] = a35. The second case is M =



(blocked end) which implies V, = 0. If we now set F, equal to unit force,
Egs. (1) yield F; = a; and Vi =0a5;. Therefore, (qll)'l represents the
force transmissibility for the case of blocked end, and (azz)"1 represents

the velocity transmissibility for the case of free end.

APPARATUS AND EXPERIMENTAL PROCEDURE
Figure 5 shows a schematic diagram of the overall apparatus used
for impedance measurements. Two conical and one cylindrical shell
models have been investigated in the experiments; their detailed dimen-

sions are given in Table 1.

TABLE 1. DIMENSIONS OF THE SHELL MODELS

Model Cone Radius Radius Thickness Net Weight
No. Angle, a a (in.) b (in.) h (in.) of Shell (1b)
1 0° 5.0 5.0 0.005 0.670
15° 5.0 2.5 0.005 0.323
3 30° 5.0 2.5 0.005 0.167

All the three models were made of tempered mild-steel sheet-stock
which was rolled and butt-welded along a generatrix, with negligible dis-
continuity at the seam. Each specimen was made to support a rigid mass
through a steel, upper end-plate which was spot-welded to the upper (or
smaller) edge of the shell. Tworows of 0.020-in. diameter spots, spaced
at 1/8-in. center-to-center, were used in the welding to secure firm con-

nections. The total weight of the upper end-plate and supported mass was

15
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32. 8 1b which was much heavier than those of the shells. It was selected
such that the resonance of the first longitudinal mode of the system would
occur below 400 cps, the estimate frequency limit for accurate experi-
mental investigations (see discussion below).

The major base of the specimen was similarly spot-welded to the
lower end-ring (a steel annular plate weighing about 15 1b), which was
mounted on a thick, steel base-plate through four piezoelectric force trans-
ducers. The entire arrangement was then bolted to the armature of an
electrodynamic shaker.

Throughout the design, special emphasis has been placed on main-
taining high rigidity in all parts relative to that of the shell models so that
the usual mass-cancellation procedure may be used to eliminate the inertia
force of the lower end-ring. Thus, a portion of the resultant acceleration
signal from this end-ring was properly scaled and inverted, then fed into
the force signal to produce a vector cancellation (Fig. 5). Preliminary
checkout of this procedure by exciting the end-ring alone indicated that it
was rigid enough to produce only inertia-force signal up to about 500 cps,
and started to show appreciable elastic deformation at about 600 cps.
Therefore, no experimental data were taken beyond this frequency.

The experiments were designed to measure both the driving-point
impedance at the base of the shell as well as the transfer impedance

through the specimen. The input force F, was measured as described in
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the preceding paragraph, and the accelerations at the two terminals were
measured by piezoelectric accelerometers. Integrations of the accelera-
tion signals (to give direct velocity readings) as well as the mass cancella-
tion procedure were performed electronically through operational amplifiers.
Narrow-band frequency filters were also used to filter out high frequency
noise from various sources. The output force and velocity signals were

then displayed on an oscilloscope for examination and recorded through a
digital voltmeter. The high sensitivity of the transducers allowed excita-
tions at low input levels and maintaining good accuracy throughout the

experiments.

RESULTS AND DISCUSSIONS
The numerical results presented here were calculated on a CDC-

3600 computer. In the calculation of the transfer matrix, for conical

ij
shells, a numerical integration subroutine using fifth-order Adams
method*® was incorporated in the program for integrating Eqs. (9). The
calculated four-pole parameters, 944 of the three shell models are shown
graphically in Figures 2-4. If we use the reciprocity condition (3) as an
accuracy criterion, the results indicate that the numerical integration
procedure introduces higher error as the frequency approaches the sin-

gularity (6212 cps for the 15° cone, and 5569 cps for the 30° cone). For

example, for the 15° cone, the error is about 4% at 4000 cps and increases

*The subroutine, written by R. H. Hudson, is a self-starting variant of
the Adams method incorporating automatic step-size control.
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to 12% at 5000 cps; for the 30° cone, the error is 3% at 2000 cps and
increases to 8% at 3000 cps. As mentioned before, the four-pole param-
eters become infinitely oscillatory as the frequency approaches the singu-

larity; therefore, the error is inherent to the ill-behaved Egs. (9) near

this frequency and cannot be eliminated by the step-size control in the

integration process. |
The correlation of the calculated and measured impedances, Z11

and Z,,, are shown in Figures 6-8. It may be seen that the agreement is

in general very good. In Figure 7, some unusual scattering of the input

impedance Z;; may be seen near 250 cps. Careful examination showed

that this was a result of dynamic instability of geometric imperfections

along the butt-joint seam, which showed excessive lateral vibration at

this frequency. In Figure 8, the so-called ''split-resonance' was observed

in the experimental data of the input impedance Z;,, which exhibited two

sharp peaks with close frequencies (the first peak at about 380 cps and

the second at about 410 cps, whereas the calculated resonance is 392 cps).

This may alsoc be associated with some model imperfections, but no

definite explanation can be found.
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PLAN FOR RESEARCH DURING THE NEXT QUARTER

During the next quarter, it is planned to continue on both the analyti-
cal and experimental work to determine the (4 X 4) transfer matrix, driving-
point impedance and transfer impedance of the conical shell under lateral
excitations. Since the beam-type bending and transverse shearing modes
are always coupled, it is equivalent to coupled electric circuits with eight
poles. In the experiments, we have restricted our attention to pure trans-
lational vibrations at the input end, but the responses of the attached mass
at the output end have both a translational and rotational component. Both
the analytical and experimental work on this phase are presently well
under way and are expected to produce satisfactory progress during the next

quarter.
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‘ APPENDIX

LISTING OF COMPUTER PROGRAM AND FORMAT
OF INPUT DATA CARDS

PROGRAM CONEIMP

PROJECT 0 2 « 2 0 3 4

cDC 3600 FORTRAN .

DIMENSION Y(2),F(2),8¢20),TL(2) .

DIMENSION FRQ(20),FRAX(20),FRAN(20),FT(2),UL(2)

NATA (PI=3,14159245),(C12386,0),(C7®1,74532925F02),(ERR=1,E~5)
2000 READ 200, N,N1QPT

200 FORMAT ( 215 )
IF (EOF,60)80,85
80 STopP
C wesx GENMETRIC PARAMETERS
85 READ 205, A,SB,ALPHA,H
205 FORMAT ( 4F10,0 )
C ex» MATERIAL PARAMETERS
READ 210,ENU,E,RHD
210 FORMAT ( F10,0,2E10,2)
C ww*x RIGID MASS
READ 215, WT
215 FORMAT ( F10,0 )
BM 3 WT/C1
ALFR & C2+ALPHA
DCN = COSF(ALFR)
DSN = SINF(ALFR)
W0SQ = E/(RHOwA«A)
W0 s SQORTF(WDSQ)
WS 3 WN*DCN
, FS = WS/(2.0%P1)
C wx+ FREQUENCY RANGE
READ 220, (FRQ(I),FRAX(I),FRONCIY, 1®1,N)
220 FORMAT ( 3F10,0). '
PRINT 300 .

o e N

SWR00010
SWR00020
SWR00030
SWR00040
SWR00050
SWR00040
SWR0D070
SWR00089
SKR000G0
SWR00100
SWRO0110
SWR00120
SWR00130
SWR00140
SWR00150
SWR00160
SWR00170
SWR00140
SWR00190
SWR00191
SWR00192
SWR00193
9WR00194
SWR00195
SWR00196
SWR00197
SWR00200
SWR00240
SWR00220
SWR00230

3NN FORMAT(1W1,30X,60H CONICAL SHELL LONGITUDINAL IMPEDANCE PROGRAMSWR00240
1 -~ W.C.L, HU//68H COMMENT < TH1S PROGRAM CALCUI ATES TRANSFER MATRISWROB250
2X BETATJ(OMEGA) AND/10X,58HFOUR«POLE PARAMETERS ALPMAIJ(OMEGA) FORSWR002A0
3 CONICAL SHELLS/10X,61LHUNDER LONGITUDINAL EXCITATION,ALSO CALCSWR00270
4ULATES INPUT IMPENANCE/10X,62H711(0MEGA) AND TRANSFER IMPEDANCE 21SWRO02A0

S2(0OMEGA) WHEN AN ARBITRARY/10X,44HMASS M 1S ATTACHED TO THE OUTPUTSWROO0290

6 TERMINAL 2.) '
PRINT 305, A,SB,ALPHA,H

SWRO03INO
SWR00340

305 FORMAT (1H0,28HINPUT - GEOMETRIC PARAMETERS/BX,22HMAJOR BASE RADIUSWRO00320
1S A = ,F4,1, BH INCHES,,4X,22H4MINOR RASE RADIUR B = ,F4,1, BH INCHSWROO33D
2ES, »3X,25HSEMIVERTEX ANGLE ALPHA ® ,F5.1, 9H DEGREES,,/8X,14NTHICKSWRO0340

3NESS H ® ,F6,3, 8H INCHES,)
PRINT 310, E,ENU,RHO

SWR00350
SWR0O0340

310 FORMAT (1H0,27HINPUT - MATFRIAI PARAMETERS/8X,19HYNUNGS MODULUS E SWR00370
le ,EB,1, 5H PSI,,4X,20MPOISSONS RATIO NU = ,F4,1,1H,,4X,19HMASS DESWR00340

2NSITY RHO = ,E10,3+19H LB(SEC)##2/(IN)ww4)
PRINT 315, WT,BM

SWR00390
SWR0G8400

315 FORMAT (1HO0,81HCALCULATE IMPEDANCE 211(DMEGA) AND 712(OMEGA) FOR WSWR00410
1EIGHT W = ,F8,1, 3H LR,4X, 11H( MASS M ® ,F6,3,21K LB(SEC)*#2/(IN)SWR00420

2 Y/7777)
PRINY 328 .
320 FORMAT (1HO,32HCALCULATED FOR FREQUENCY ( CPS ))
PRINT 325, (FRQ(I).FROX(I),FRANCI),I®1,N)
325 FORMAT (8X,3(F8,1,2H (sF7,1,2H ),FB8,1,4X))
PRINT 340, FS,W$ ,
340 FORMAT (1H0,29HFREQUENCY SINGULARITY = FS = ,F10.1, SH CPS,,4X,
1 OHOMEGAS = ,F10.1, 8KW RaAN/SEN)
PRINT 330 i ) i
330 FORMAT (1HO0,4X,4HFRED,6X, SHOMEGA,5X, 6HBETA11.6X.,6HBETA22.6X.
1 6HBETAL12,6X, 6MBFETA21,6X, 7HAI PMA12,8%, 7HALPHA21,5X,3W211,
2 9%X,3H212/24X%, aHsALPHA11,4X, BHaALPHA?2)

IF (N10PT)95,90,95
95 PRINT 355 '
355 FORMAT (1HO,20HINTERMEDIATE RESULTS, 10X, 1MX,13X, 4WCAPU,12X,
1 SHNTHETA, 15X, 1HF,14X, tHU)
90 DO 40 131,N
FREQ = FRG(I)

SWR00430
SWRDO0440
SWR00450
SWR00460
SWR00479
SWR00471
SWR00472
SWR00473
SWR00480
SWR00490
SWR00500
SWRO0510

SWRODS41
SWR00512
SWRO0O513
SWRO0514
SWRO0520
SWR00530
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19n0n

15
350

10

6N
345

30

5N
65

70

75

45

335
55
35

40

W = ?2,N*PI*FRED

WSN = WeW

TM?2 = WSO/WO0SG

TM3I = WSO/ (WS*WS)

PX = (1.0-SB/A)/64.0

FI(1y = 1.0
ur¢1y = n,
Fl¢z)y = 1.
yie2) = 1,0

I¥ (TM3.GT7.0,80)15,10

PRINT 350, FREQ,W

FORMAT (4H ,2F10.1,4X,25HNEAR OR AROVE SINGULARITY)
G0 TO 55

CONTINUE

no 45 J=1,?

X = SB/A

Y(1) = F1(J)

uc = U1 (D)

Y(2) & (1.0/¢1,0mTM20X*X) ) ((ENUSDSNWY (1)) /(2 . NaP{*EwH#DCN) =
1 (1.0-TM3+X#X)wUC*DCN) ‘

BNT =z ((ExH*#TM2#X)/ (A*DSNeDCN))w (Y (2)«NCN+UC)

TL(L) = X -

TL(2) = 1.0

CALL NORDSET (K,X,DXs? ,Y,F,ERR,B,2,T.,0,0)

K = §

CALL NORDINT

GO TO (20,1,25,30)K

DFDX = 2. 0#Pl#EwH» (TMO*X*Y(2)w(DCN/DSN)=(ANTeA«DCN)/(E*H))
DUNX & =(1.0/(FEeHaDSN) )@ (Y (1)/(2, 0wPlaX2NCN)+FENUSRNT®A)
F(1) = DFDX ‘

F(2) = DuDX

GO T0 1

TL = TL+DX

UC = (1.0/(DCN=(TM2%X*X)/DCN) )« ((ENUSDSNwY (1)) /(2. NePeEwH*DCN)~
1 (1.0-TM2eXwX)wY(2)) .

BNT = ((ExH*TM2wX)/ (A«DSNeDCN))*(Y(2)*NCN+UC)H
[F (NINPT)60, 1,60

PRINT 345, X,UC,8NT,Y(1),v(2)

FORMAT (1HN,20%x,5r17.8)

GO 70O 1

UC = (1.0/(DCN~(TM2#X*X)/DONY)I*((ENUDSN®Y (1)) /(2 , N4PIwE*H*DCN) =
1 (1.0-TM2eX®X)wY(2))

BNT & ((FwH*#TM2#X)/ (A*DSNaNCN)IIN(Y(2)«NCN+UC)
IF (N10PT)50,6%,50

PRINT 345, X,UC,RNT,Y(1),Yv(2)

CONTINUE

IF (J=1)75,70,75

R11 = Y(1)

B21 =& UC

GO TOD 45

B12 = v(1)

B22 = uC

CONTINUE

A12 = -B12/W

A21 = R21*W

712 & R11+«BM¥W-B12/W

Z11 = 712/(-B21+BM*WSQ*B22)

PRINT 335, FREO,w,B11,B22,R12,Rr21,412,421,711,712
FORMAT (1H ,2F10,1,B(2X,E1n.3))

1F (FRFQeFRQN(1))35,40,40

FREQ = FREQ«FROX(])

GO To 1000

CONTINYE

GO To 2000

END

SWRO0540
SWRONGH50
SWR00560
SWR00570
SWR00620
SWR00630

- SWRONGK40

SWR00650
SWR00660
SWR0N670
SWRO0DARD
SWR00690
SWROO700
SWRON710
SWRE0720
SWRO0731
SWRON740
SWRU0O750
SWR00760
SWRO0770
SWROO7RO
SWRO08BNO
SWR(00810
SwRO0820
SWR00830
SWR00840
SWR00850
SWROD8AN
SWR00B70
SWR00N0930
SWR00940
SWRDO95N
SWR(N9AN
SWRU0961
SWRON9AKZ
SWRO0D963
SWRO0670
SWRO06A0
SWR(0g990
SWR010Q0
SWR01001
SwR01012
SwR01003
SWR010n4
SWR01005
SWRO10N6
SWR01010
SWR01020
SWR01030
SWR01040
SWR01050
SWR010690
SWR01070
SWR01080
SWR01090
SWR01100

SWR01110
SWR01120
SWR0113¢0
SWR01140
SWR01150
SWR01140
SWRO1170
SwrR01180
SWR01160

31



lsNeoRe]

aoaon

aao

3000

3001

3002

SUBROUTINE NORDSET (K, T,H,N,Y,F,DELTAY,B,NTL, TL,NPL,PL)

M<ZTLT X

DELTAY
R

NTL

TL

NPy

PL

R(1,1)
B(2,1)
B(3,1)
B(4,1)
B(5, 1)
R(6,1)
R(7,1)
B(8,1)
B(o, 1)
R(10, 1)

CONTROL INTEGER FOR USFR STATEMENTS .

INDEPENDENT VARIABLE
INTEGRATION STEP SIzF

NUMBFR OF FIRST NRDER EQUATINNS
DEPENDENT VARIABLES

DERIVATIVES

FRROR CONTRNL VERTOR

TEMPNRARY STORAGF, DIMENSION 10#N
NUMBFR 0OF ENTRIES IN TL

LIST nF INTERUPT TIMES

NUMBFER 0OF ENTRIES IN PL

LIST OF INTERUPT FUNCTIONS

EQUIVALENT
OF
ADAMS
- DIFFFRENTES
PREDICTFD DER[VATIVES
Y-AT START 0OF INTEGRATION STFP
SECOND PRECISION PART NF Y AROVFE
F AT START OF INTEGRATION STFP
HOLE FOR INITIAL Y WHILE STARTING
SECOND PRECTSION PART OF Y

INTEGER
REAL
REAL
TNTEGER
REAL
REAL
REAL
REAL
INTEGER
REAL
INTEGER
REAL

DIMENSTON Y(1),F(1),B(10,NM),TL(1),PL(1),DPTA(2),TEST(2),
1FINDEIR) ,PLEFT(10),PRITE(LN)
EQUIVALENCE (DPTA,DPTEMA)
TYPE INTEGER STEP

TYPE DOUBL

E DPTEMA

TYPE LOGICAL FIND,HALVE,DQUBLE
COMMON/NORDCOM/IDER, IFOS, ITL, [PL,STEP,HMAX,HMIN,HBRIG, HL

DATA (HBIG

=0), (HL=0)

DELY(1)2H#(B(8, 1)+(B(1,1)s(BC2,1)4(B(3,1)+(Bl4,1)+2)))))

RETURN

ENTRY NORDINT

IF (K) GO

TEST FOR C

TQ KFLIP

ALLING SEQUENCE ERROR

NORLO000D0
NORLQO10
NORLIIQD20

. NORDNO3D

NORDQO 4N
NORLODSD
NQRTIONAN
NORDOOT70
NORIIOORD
NORLOOQD
NORUN1IND
NORNN14D0
NORDD120D
NORUD0I3IN
NORDN140
NORDNO1560
NORLO1KN
NORDO170
NORDO1RN
NORDN190
NORDD20D
NORDN210D
NORNDN220
NORUO230
NORDD2410
NORDD250
NORDO26N
NORDOZ27N
NORDO?280
NORDXO29N
NORDO300
NORUOD3I10
NORDOD3I20
NORDO3I3Q0
NORD0340
NORDO0350
NORDO3I&D
NORDO370
NORDO 381
NORDO3QO0
NORDO4ND
NORDO4110

IF (H,LE,0.O0R,N,LF.0,0R,N,GT,2000,0R ., NTL,LT,0,0R.NTL.GT,500,0R.NPLNCRDO420
X, LT.0.NR.NPL,GT,5N0,0R,DEL_TAY tE,0,0R, T,LT.0)

XCALL OGB8QERROR

SET SUBRNU

HMAXEHMIN=

TINE GOUNTERS AND STFP SIZE DATA

{DER=]ENS=zITL=2IPIL =STEPeD

CONTROL SECTION FOR STARTING INTEGRATION

ASSIGN 300
GO 70 1001
H=H,AND,37

0 To KFLIP

774000000000008

DO 3002 J=1,NTL
IF (T.EQ,TL(J)) 3001,3002
ASSIGN 3002 TO kFLIP

GO TO 1002
CONTINUE-
T LEFT=T

DO 3004 U=1.,NPL

{0,34HERROR IN NORDSET CALLING SEQUENCE,)

NORD0439
NGCRD0440
NORDO04S0
NORDO046KD
NORDGO470
NORDQ48n
NORDO490
MORDNSNQ
NORDOS510
NORDOS5240
NORDO530
NORDOS540
NORDO550
NORDOSKN
NORDOS70
NORD0580
NORDOS90O
NORDOGNDO
NORDO610
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PLEFT(.)=zPL(J) NORLINGZ2D

TF(PLC.Y.FQ.N . HY3003,3n04 NORIINEIN

3003 ASSIGN 3004 TO xF)| P NORIING4 )
GO T 1003 NORUNBRI

3004 CONTINUE : NORLN&AY
nu 3N1no 1=1,w NORDINGT

3010 R(9,1yr=Y(1) NOKRITO&RN
Ni=-1, NORINO &GN
ASSIGN 3100 TO JSFOUR NORLOTZ0D)

GO TO 1400 NOR(N710

30720 [=STFP,AND,3 NORDOT720
IF (1) Gn TO 2000 . NORDO730
1=STEP/4 NORIINT74Y)

GO TO ($n30,3050,3030,3030,3030,3040) 1 NORTIG 750

I0IN nl==-1, NORIINT7 A1
ASSTGN 200N TQ 1SFOUR NORIINT 70

GU TO 1400 . NORIDO7RAN

304n Di=2, NORITRT7Q0
HMAXZHMINz~H NORIIORNN
ASSIGN 3050 TQ 1SFOUR NORIINBY ]

RO TH 1400 : NORIIOB2D

3050 DO 3n6n I=1,N ) NORIORZN
Y(TY=R(9, 1) NORIUDB4AD

3040 R(10,1)20,0 , NORINBSD
3070 ASSIGN 3030 TO «FLIP NORDOBAQ
GO To0 1000 _ NORINNB70

3080 D1=.5 NORDOBAN
ASSIGN 3090.T0 i(SFOUR NORIJOB9D

G0 TO 14Nn0 NQRUND9ND

3060 TF¢(HALVE)3100,3050 NORIDG10
3100 STFP=0 ' NORDING2D
nO 311n I=1,N NORDNG 37

J110 R(1,1)=R(2,1)=R(3,1)=ER(4,1)20,0 NORL:0940
GO TN 3080 NORLINGSN

c . NORLN9AN
c CONTROI SFCTION FOR TIME INTERUPTS DURTNG NORMAL INTEGRATION NORIO97N
c STATEMENT 1700 INTFGRATFES FORWARN,RFTURNING TO 1701 NORDOGSD
C : NORDO99D
1700 6O TO0 1600 : NORD1ODD
1701 DO 1702 J=1,N NORD101N
R(6,1)=Y(]) NORD1020

1702 R(8,1)=F (1) NORN1030
TSAVE=T NOR1:11040

1703 2=2.«TSAVE NORD1050
DO 1705 I1=1,NTL NORD1040

IF (TL¢IY.LTW2Z) 1704,1705 : NORD1070

1704 Z2=TL(I) NORN10RO
J=st NOR1N1090

1705 CONTINUE : NORD1160
IF (7.6E.TSAVE) Gn TD 1707 : NORD11110
ASSIGN 1706 TOKFLITP NORD1121
RTEST=TSAVE/Z , NORD1131
RTESTeRTFST.AND, ,NOT .3 NORD11419

1F (RTFST.EQ,1.0) 17051,17n53 NORL1150

17051 DO 17052 1=1.N NORD1181
17052 Y(1)=B(6,1) NORD1152
T=TSAVE NORD1153

GO 70 1001 NORD1154

17053 WP=22~-TSAVE NORM1140
ASSIGN 1001 TO ISTWO NORTI1170

GO Tp 1200 ) NORD1181

1706 ASSIGN 1703 Y0 kFLIP NORD1190



1707

17ng

17n9

1710

1711
1712

oOoaoamn

2040

2050

2060

2070

ASSIGN 1002 TO [STHREFR
G0 TO 1300

no 1708 f=1,N
F(IY=B(8,1)
Y(1)=B(56,1)

T=TSAVF

ASSIGN 1300 TQ xFi e
ASSIGN 1709 TO ISTHREF
GO To 1401

RTEST=72/T7
RTEST=RTEST.AND, {NOT,3
IF (RTFEST,.FQ,1.0) 1710,1711
ASSIGN 1711 TO wkFi lpP
GO TO 10n2

NO 1712 I=1,NPL
FINDCIY=,FALSE.

50 TO 1700

INTEGRATE ONE STEP

SAVE CONDITINNS AT START OF STEP

NO 2010 I=1,N
Bla, 1)=Y(])
B(7,1)=8¢10,1)
B(R, I)=F (D)
TSTART=T

ENTRY FOR HALVED STEP

T=T+H

no 2030 I=1,N

2=0
Y(T)=B(6,1)«DELY(])

B(S,1)=F(1)#(2.«B(1,])+(3,eB(2,1)¢(4,#R(3,1)e5 «B(4,1))))

ITERATE TWICE,NEVELOP TEST PARAMETERS

HALVE=,FALSE,

NOURLE=. TRUE,
TEST(1)3TEST(2)8aN,

no 2070 J=1,2

ASSIGN 2040 TO KFLIP

GO TO 1000

NO 2070 I=1,N

2=F(1)-B(5,1)

IF (J.EQ.2) 2050,2060
ZZ=ARSF(Z¥H)
RTEST=DELTAY#ABSF(Y(1))

IF (2Z.GT.RTEST) HALVE®, TRUE,
1f (22.GT.RTEST#.015625) DOURLE®,FALSE,
DPTAt1)=R(641)

DPTAL2)3B( 741)
7=2%,329861111111
NPTEMA=DPTEMA+DELY (1)
ZZ=ARSF(DPTA(L) Y (1)) _
IF (22.GT.TEST(J)) TRST(y)=27
Y(1)eDPTA(1)

B(10,1)3DPTA(2)

CONTINUE

CHFECK TEST PARAMETERS,BUMP COUNT OF INTEGRATION STEPS

NORL12ND
NORN1210
NOR1J1221)

.NDRP1230

NORD124N
NORL12810
NORD1240
NORD1270
NORD12R80
NORD1290
NORDI13ND
NORD131N
NORD1320
NORD133N
NORD1341
NORI1 3510
NORTI1 34N
NORU13719
NOR[D13R0
NORN1 390
NORD1400
NORD14170
NORD14210
NORD1430
NORN1440
NORD1450
NORD14610
NORD1471
NORIE14A0
NORO14690
NORN1580
NORD1611
NORD1520
NORD1530
NORDI1540
NORD1550
NORD1540
NORD1570
NORD15AN
NORD1590
NORD16M10
NORD1610
NORD1620D
NORD1630
NORD1640
NORD1650
NORD16610
NORD1670
NORD1680
NORD1690
NORD1700
NORD1710
NORT;1720
NORD1730
NORD1740
NORD1750
NORD1740
NORD1770

. NORD1780

NORD1790
NORD1800
NORD1810
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@]

1100

1101

oo

Q

(o o Ne]

0

1300

1301

1302

1303
1304

1800

1801

1802

1803

1804

1600
1601

STEP=STEP+1

TH (STFP,GT.1,AND,STEP,LT,25) 60 T 1100

TF (R,«TFST(2).6T.TEST(1),AND.,NAT.DNURLF) GA TO 150D
IF (8,+TEST(2).6T.TEST(1)) DOUBRLF=, FALSE,

1F (STFP,EQ,1) g0 To 1100

IF (HAIVF) GN Tp 1500,1100

UPNATE ROUTINE,RETURNS TO 3020 IF STARTING = 1701 OTHERWISE

n01101 I=1,N

7EF(1)=B5, 1)

B(1,1)=B(1, 1)+ (3, #B(2,]1)+(8.,%8(3,1)¢(10,*B(4,1)+2/,96)))
R(2,1)=B(?2, 1)+ (4,#B(3,1)+(10.%R(4,1)+Z2#N,4864111111))
R(3,]1)=B(3,[)+(5,+B(4,1)+2/9.6)

R(4,]1)=R(4,1)+2/7120,

IF (STFP.LE.24) GO TO 3020

1F (H,0T,HMAX) HMaX=zH

1F (M, T,HMIN) WHMIN=zH

GO 70 17061

ROUTINF TESTPHI,FALSE EXIT IS S1300,TRUE EXIT 1S 1800

DO 1301 I=1,NPL

IF (FINDCI)) GO TO 1301
IF (PLCIY*PLEFT(I},LT.0) Gn TO 1303
FCONTINUE

DO 1302 1=1,NPL
PLEFT(T)=PL(I])

TLEFT=T

GO TO ISTHREE

DO 1304 1=1,NPL
PRITE(I)aPL(])

TRITE=T

GO TO 1800

DEPENDFNT VARIABLE SEARCH PROCFDURE,ENTERED IF PL(!) CHANGES SIGN

2=0.0

NDO 1802 1s1,NPL

IF (FINDCI)) GO TO 1802

IF (PRTTE(I),EQ,0) PLEFT(1)=0
2Z=PLEFT(I)/PRITE(D)

IF (2Z.LF.Z) 18n¢,1802

7=21

J=1

CONTINUE
HP={TRITE-TSAVE)a(TRITE=TLEFT)/(1,=2)
1F CUTSAVE+RP) . ED,T,0R,Z. EN. 06) 1803,18n4
ASSIGN 1703 TO kFLIP

FIND(JU)Y=2,TRUE,

GO T0 1003

ASSIGN 1001 TO 1STWOD

ASSIGN 1300 TO kFLIP

ASSIGN 1800 YO 1S THREE

GO To 1200

CHECK FOR NDOUBLE OF STEP SIZE
1F (DOUBLE.AND.(.NOT.HBIG,OR. (HeM) LE, HB1G)) 1601,2000

hEE Y-
ASSIGN 2000 TQ ISFOUR

NORD18210
NORD1R3D
NORU1RA4N
NORD1LBS
NOR[I1LRAN
NQRD1B871
NORD1BAN
NORD189
NORTI1900
NORII1LO1N
NORND1G2N
NORD193D
NORD1940n
NORD1G5
NORD194&N
NORN19 70
NORD19AD
NORND19G0
NORD20DN
NQRD?2010
NORD?2020
NORD2030
NORD?2040
NORD2050
MORD2060
NORD2070
NORD2080
NORD20S0
NORD2100
NORD21110
NORD?2120
NORD2130
NORD2140
NORD2180
NORD2160
NORD2170
NORD2180
NORD2160
NORD220D
NORD?2211
NORD?2220
NORD2230
NORD2241
NORD225N
NORD22640
NORD2270
NQORD228an
NQRD2290
NORD2300
NORD23110
NORD2320
NORD2330
NORD2340
NQRN2350
NORD23A0
NORD2370
NORL23R0D
NQRD2390
NORD2400
NORD24190
NQRD2420
NORD2430



3

1000

1001

100?

inn3

o0

aG

o NeoRe]

140N

1401

12ng

1201 Y(1)=B(6, I)oHPt(B(B l)*(Diﬁatl 1Ye(D2%2(2,1)e(N3I*B(I,1)eD4wB(4,]

GO TN 414nn

SURROUTINE CaLI S, ASSUMES kFLIP SET PRIOR TO ENTRY

K=1
IIERsINER+1
RETURN

K=2
IENS=21F0S+1
RETURN
K=.J+2
[TL=1T +1
RETURN

K= J+NTI «2
IPL=IPI +1
RETURN

SUBROUTINE TO CHANGE STEP SIZF

H=H=*N1

D2=01+N1
D3=D2w«n1
D4=D3«ND1

DO 1401 I=1,N
B(1,1)=B(1,1)*D1
B(2,1)=B(2,1)=0?
B(3,1)=8(3,1)«D3
B(4,1)=B(4,1)xD4
60 TO JSFOUR

ROUTINF TO PREDICT INTERMEDIATE VALUES OF Y(1)

T=TSAVE+HP
D1zHP/H
N2=D1wn1
D3=D2«n1
D4=D3Iwn1

DO 1201 I=1,N

1))}

1500

1501

GO TO TSTWO

RESTORE T,Y,F. MWALVE STEP SIZE,

RTEST=H/2

TRY STEP AGAIN

i

IF (HL.AND.RTEST.I.T.HL) GO TO 2020

IF (T,FQ.(T#RTEST)) CaAlLL QBQERROR (0,23HK LESS THAN 2% (= 36)*T )

STFPeSTEP-1
T=TSTART

NO 1501 I1=1,N
Y(I)=B(6,1)
B(10,1)=sB(7,1)
F(1)=B(8,1)

Ni=,%

ASSIGN 2020 TO 1SFOUR
GO ToO 1400

END

NORD2440)
NORD24510
NORD244&0

_NORD2470

NORD?480
NQRD249610
NORU2500
NORN251 D
NORU?520
NORLUPS530
NORU25410
NORN25510
NORD2560
NORN2570
NORD?580
NORD2590
NORD?2610
NORD2610
NORD2620
NORN2630
NORLI2640
NORD2650
NORD2660
NORL2670
NORD2680
NORD2690
NORD27100
NORD2710
NORD2720
NORD2730
NORD2740
NORD2750
NORD2760
NORD27710
NORD2780
NORD2790
NORD2800
NORD2810
NORD2820
NORD2830
NORD2840
NORD2BS0
NORD2860
NORD2870
NORD28AD
NQRD2890
NORD2900
NORD2910
NORD2920
NORD2930
NORD2940
NORD2950
NORD2960
NORD2971

‘NORD2980

NORD2990

NORD3000.

36



Format of Input Data for Conical Shell

(1)

(2)

(3)

(4)

(5)

The user provides the following data cards in the order as listed:
The first card gives two integers each in a field of five columns. The
first integer is the number of frequency sets to be calculated (see
below). The second is a boolean integer indicating whether the inter -
mediate results of numerical integrations are needed or not, (1 for
printout and O for not printout).
The second card provides the geometric parameters of the cone: four
floating -point numbers each in a field of ten columns, giving the major
base radius a, minor base radius b, semivertex angle a (in degrees)
and shell thickness h (in inches), respectively.
The third card provides the material properties of the cone: one
floating -point number in a field of ten columns, giving the Poisson's
ratio, and two real numbers in exponential form, each in a field of
ten columns (2E10.2), giving Young's modulus E (in psi) and mass

density p (in lb-sec?/in%), respectively.

37

The fourth card gives the weight of the attached mass (in 1lb), a floating-

point number in a field of ten columns.

Each of the remaining data cards gives a set of input frequencies in
cps. For example, the fifth card should provide three floating-point
numbers: the first frequency of the first set, the increment of the set,

and the final frequency of the set, each in a field of ten columns. The



sixth card should provide similar numbers for the second set of frequencies,
etc. The total number of sets should be the same as the first integer in

the first data card.
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OO

PROGRAM CYLINDER
SWRI PROJFCT 02-203a SWR00010
chn 3600 FNRTRAN SWR00020
NIMENSTON F(12),FnX(12),FN(12) SWRONDZIO
PaTA (P1=3.14159245),(C1=384,N) : SWROOULA4D
2000 READ 2n0, N SWR0(0050
200 FORMAT ( 15 ) SWRUODAKD
If (FOF,60127,25 SWRODO7N
20 STNP SWRONOKN
war GFOMFTRIC PARAMETERS SWRO00G0
25 READ 205, A4,SL.H SWRON11M
205 FORMAT ( ZFin,n ) SWRAN119
wsxsx MATERIAL PARAMFTERS SWRO0129
READ 210, AN, ,RW0 SWRO0130
210 FORMAT (F10,0,281n.2) SWROD14N
TM1 = 1 .0=-FNidwFENIY SWRON150
WOSQ = E/(TMIwRHNeA®A) SWROD160
*ew RIGIND MASS SWR00170
READ 215, WT SWRU01R"
215 FORMAT ( F10,0 ) SWRN019N
RM = WT/C1 SwR00200
erw FREQUENCY RANGF SWR00210
READ 205, (FOI),FOX(I),eN(T)Y, 121,N) SWR002210
PRINT 200 SWRD0230
300 FORMAT(1H1,30x,480HCYLINDRINAL SHELL L ANGITUDIMAL [MPENDANCE PROGRAMSWR00240
1 - W.C.L. HU//684 COMMENT - THIS PROGRAM CALCULATES TRANSFER MATRISWRON259
2% BETATJ(OMEGA) AND/INX,58HFOUR-POIE PARAMETERS A{PHATJ(AMEGA) FORSWR0ON240
3 CYLINDPRICAL SHELYS/10X,61HUNNFR LANGITUDINAL FXCITATION,ALSD CALCSWRO0N270
AULATES INPUT IMPENANCF/10x,62H711(NMEGA) aAND TRAMSFER IMPEDANCF Z1SWRON2AN
52(NMFGA) WHEN AN ARRITRARY/10X,44HMASS M [S ATTACHED TO THE OUTPUTSWRON2910
6 TRFRMINAL 2,) SWRONZNO
PRINT 305, A,SL,H SWRNN310
305 FORMAT (1H0,28HINPUT - GEOMETRIC PARAMFTERS/RX,11HRANIUS A = , SWRUN320
1F4,1, BH INCHES,,4X,11H_ENGTH I = ,F5,1, 8H INCHES,,d4X,14HTHICKNESSWR00330
28 H = ,FA.3, 8H INCHKES,) SWR00340
PRINT 310, E,ENU,RHD SWR0N35N
310 FORMAT (1HN,274INPUT - MATFRIAI PARAMETERS/8Y,19HYNUNGS MODULUS E SWR00340
iz ,EB.1, S5H PSI,,4X,20HP0ISSONS RATIO NU = ,F4.,1,1H,,4X,19HMASS DESWR00370
2NSTITY RHO = 4E1N,3,194 (B(SEC)##2/(IN)wed) SWR003RO
PRINT 315, WT,RM SWR00390
315 FORMAT (1HO0,61HCAI.CULATE IMPENDANCE Z11(OMEGAY AND 712(OMEGA) FOR WSWR004N0
1EIGHT W = ,F5,1, 3H LR,4X, 11H( MASS M 3 ,F6,3,17H LB(SEC)*+2/(IN)SWR00410
2)) SWR00470
PRINT 320 ’ SWR00430
320 FORMAT (1H0,32HCAI CULATED FOR FREQUENCY ( CPS 1)) SWR00440
PRINT 225, (F(1),FDXCI),FNCIY,TRY,N) SWR00450
325 FORMAT (8X,3(FB8,1,2H (,F7,1,24 ),FB,1,4X)) SWR004A0
PRINT 330 SWR00470
330 FORMAT (////4X,4HFREQ,6X, SHOMFGA,SX, AHBETA11,6%, 6HBETA22,6X, SWR00480
1 6HBFTAL?,6X, AHRETAZ1,6X, 7HA|I PHA12,5Y, 7HAL PHA?1,5X%,3HZ211, SwR00460
2 9%,3H212/24X, 8H=ALPHA11l,4X, B8HsALPHA22) SWR005010
NO 40 f=1,N " SWR00510
FREQ = F(T1) . SWR00520
1000 W = 2,N«PI«FRERN SWRO0530
WSQ = WwW SWR00540
TM2 = WSO/WOSQ SWR00550
TMZ w TM2w(1,0TM2)%(1,0/(TM1-TM2)) SWRO0540
TM4 & 2, NaPlwRHNWH*A¥A®KSQ SwR0G57N
IF (TM?2.GT.(TM1eN 99))15,1n SWR0O0580
10 ALDA = SORTF(TM3) SWR0NS590
ARG ® (ALDA%SL)/A SWRUNEND
B1t e COSF (ARG) SWR00610
SN = SINF(ARG) SWR00620
B12 = -(TM4/ALDA)#SN SWR00630
R21 = (ALDA/TM4)eSN SWR00640
R22 = R11 SWR0O0650
A12 = -B12/W SWR00640
A21 = R21+*W SWRE0670
712 = R11+BM*W-B12/W SWRO06R0
711 = 712/(~-H21«BM*WSQ+B22) SWRD0690
PRINT 335, FREQ,W,B11,B22,B12,R21,4A12,421,714,712 SWROO7N0
335 FORMAT (1H ,2F10,1,B8(2X,E10,3)) ) SWR00710
45 1F. (FRFQ~FN(1))35,40,40 SWR00720
X5 FREQ = FREQeFDX(I) -~ ) SWR0073Y
GO0 YO 10060 SWRO07490
40 CONTINUE SWROD750
GO TO 2000 SWROD740
15 PRINT 340, W SWR0ON0770
340 FORMAT (1H ,3X,EL10,3,4X,25HNEAR .OR ABOVE SINGULARITY) SWR00780
GO To 45 : : SWROD790

END ' SWR00800
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Format of Input Data for Cylindrical Shell

(1)

(2)

(3)

(4)

The user provides the following data cards in the order as listed:

The first card gives the number of frequency sets, an integer in a
field of five columns.

The second card provides the geometric parameters of the cylinder:
three floating-point numbers each in a field of ten columns, giving
the radius a, length £, and wall thickness h of the cylindrical shell
(all in inches).

The third card provides the material properties of the cylindrical
shell, same as the third data card for the previous case of conical
shell. Jc M cand f’\'rvvxv{M-/ ‘/dg p,,Uto.c.LLo( W}Af
Each of the remaining data cards gives a set of input frequencies in
cps, same as the previous case of conical shell. The total number

of sets should equal the integer in the first data card.
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